PHYSICS 411-0 CLASSICAL MECHANICS

Ian Low, Winter 2010

Course Webpage: http://www.hep.anl.gov/ian/teaching/CM/CM_Winter10.html

ASSIGNMENT #1

Due at 2 PM, January 13th

Reading Assignments:

Chapters 1 and 2 except Sections 2.4 and 2.5 of Goldstein's book.

Problem 1

Given the Lagrangian of a free particle in an inertial frame $L_0 = mv^2/2$, consider two inertial frames K and K' moving with the constant relative velocity \mathbf{V} . Derive the transformation property of L_0 under the Galilean transformation:

$$\mathbf{r}' = \mathbf{r} + \mathbf{V}t$$
 $t = t'$

and show the equations of motion are the same in the two frames. In other words, the Lagrangian of a free particle satisfies the Galileo's relativity principle.

Problem 2

Next we consider the Lagrangian of a free particle in an accelerating frame K', moving with respect to an inertial frame K with a non-constant velocity $\mathbf{V}(t)$. Notice only the magnitude, but not the direction, of \mathbf{V} is time-dependent.

(a) Show the Lagrangian L'_0 in K' is given by

$$L_0' = \frac{1}{2}mv'^2 - m\mathbf{W}(t) \cdot \mathbf{r}' ,$$

where $\mathbf{W} = d\mathbf{V}(t)/dt$.

(b) What is the Euler-Lagrange equation for L'_0 ? Derive the equation of motion in K' and give a physical interpretation of your result.

Problem 3

Problem 2.4 in Goldstein's.

Problem 4

Problem 2.12 in Goldstein's.

Problem 5

Problem 2.24 in Goldstein's.